Identifying and Implementing Biomass Heating Solutions

Successful Strategies and Qualifiers for Biomass Boiler System Installations

March 2, 2011

IVRĽ

Presented by: Cam Hamilton, Business Development Manager, McKinstry Co.

Agenda

Identifying and Implementing Biomass Heating Solutions

- > Ideal Client Profile
- Successful Attributes of a Biomass
 Project
- > Qualifying an Opportunity My
 Perspective
- Lessons Learned from Past Projects
- > Implementation Strategies
- > Summary

Ideal Client Profile

- Public or Private
- Heating load of facilities does not matter, the client's passion does
- Strong commitment torenewable energy, sustainability, timber industry, etc.
- Genuine interest in biomass heating
- Ability to grasp "bigger picture" concepts and ideas and support them
- Willingness to become a demonstration project
- Understanding of the total cost of ownership of a systems, versus a first cost ownership approach
- Has a willing maintenance team to operate the boiler

Successful Attributes of a Biomass Project

Successful Project Attributes

- Start with the fuel (availability, quality, cost) and design around that
- Understand the client's motivation for using a biomass boiler system, and make it effective for their needs
- Educate, Educate and Educate some more.....the client and community need to know as much as possible about the biomass boiler system
- Economic Drivers Current fuel cost, biomass fuel cost, incentives, and operating costs impact the project success
- A passionate client can create a successful project
- Understand all the impacts to the project and cover off on them.

Qualifying an Opportunity – My Perspective

Qualifying an Opportunity – My Perspective

- Figure out the client drivers and passion
- What is the current fuel?
- Is the current boiler at the end of its useful life?
- What type of biomass fuel would work best for the client?
- What are the client's maintenance staff capabilities?
- Is there space in the existing boiler room, or are you constructing a new building?
- If not, where are you going to put the boiler?
- What is the right heat load calculation for the building? Faceplate data does not mean heat load
- All the stakeholders need an "eyes wide open" understanding of the system ownership

Qualifying an Opportunity – My Perspective

- Is there access for fuel delivery?
- Is there a back up boiler?
- How do you tie into the existing system?
- What needs to be replaced on the current system? Steam traps, unit ventilators, piping, etc. all impact whether the project is successful or not
- Is this in a nonattainment area? Oregon has two Particulate Matter (PM-2.5) Nonattainment Areas, Klamath Falls and Oakridge

And finally

 How is the client going to pay for the design and installation of the biomass boiler system

Lessons Learned from Past Projects

Lessons Learned

- No matter what you plan for, Murphy's Law will happen
- Fuel is the most important aspect of the project
- Never assume, confirm, document and continually confirm
- Get buy in on operating the system from all levels of the clients' organization, especially the maintenance staff
- Count on your first years' energy savings being less than what you predict it to be, like 30% to 50% of predicted energy cost savings
- Well thought out design is crucial to the success of the project, sweat the small details
- Commissioning of the system is a necessity, not a nice-ity

Lessons Learned

- Be prepared for anything to happen, be willing to adapt where you can
- Did I mention fuel is the most important aspect of the project?
- Know what it costs to burn fossil fuel versus wood, be able to explain that burning wood saves money
- Owners of the system, ask the hard questions about everything regarding the project
- Designers and Constructers of the project, if the client doesn't ask, still communicate everything with them, and once again, over communicate and document everything for them
- By the way, did I mention fuel is the most important aspect of the project? If not, it is.

Implementation Strategies

Implementation Strategies

- Design in integral to all biomass projects (civil, mechanical, electrical)
- Both Public and Private clients can use:
 - Design/Bid/Build
 - Design/Build
 - Energy Savings Performance Contracting
 - "We can do it ourselves" approach

Design/Bid/Build

- The traditional method that most client's use for construction, especially public sector clients
- Three very district phases of work
- Need tight integration and collaboration to make the project come out successfully
- The owner assumes a lot of the project risk, and owns the project outcome
- Can be a successful installation mechanism, as long as the separate and district phases of work can be controlled by an intelligent owner's representative
 - Mostly results in low bid, conform to specification sections of work, once again risky to the owner
 - Owner assumes all operational risks post installation

Design/Build

- Integrates the design of the biomass boiler system with the building of the project
- *Reduces three distinct phases of work, to one*
- Since the design team and build team are one team, the outcome is more comprehensive
- The project risks associated with Design/Bid/Build are shifted to the Design/Build team
- The project is outcome based, which focuses on total cost of ownership, not just first cost
- Owner assumes all operational risks post installation

Energy Savings Performance Contracting

- Integrates the design of the biomass boiler system with the building of the project, with the on-going operations being covered through energy savings and operational performance guarantees
- *Reduces three distinct phases of work, to one*
- The Energy Services Company works with the client to determine how the project will be installed, mostly done through a design/build or CM/GC role
- The project risks associated with Design/Bid/Build are shifted to the Energy Services Company
- The project is outcome based, which focuses on total cost of ownership, not just first cost
- Owner assumes operational risks post installation, but the ESCO has the energy and equipment performance risks

"We Can Do It Ourselves" Approach

- Client is driven by overall costs being low, but have a strong desire to install a biomass boiler
- Mostly done with "in-house" staff, which relies on their technical expertise to create a successful project
- Sometimes this approach works, most times it doesn't
- All project risks and performance risks reside with the owner
- Biomass boiler installations are not the area to take on the "bravado of a barn raising" project approach

Summary

- Fuel is the beginning and most important attribute
- Maintenance costs are more for biomass boiler systems
- Strong commitment is needed from key stakeholders from the project team and client team
- Design of these systems is different than other boiler systems
- Great systems that have a unique appeal to them

Project Overview

- Rural district with 389 students
- Buildings range in age with the oldest built in 1917
- Aging infrastructure and strong need to replace equipment
- Limited budgets, last bond was for \$2 million to complete some projects
- 3 buildings totaling +100,000 ft2
- Strong community support for the district, but limited bonding capacity
- Wanted to upgrade facilities

rorororororororororororororor

Project Overview

- Rising Energy Costs (Fuel Oil especially)
- Using approximately 50,000 gallons of oil each year
- In 2006, Oil was at \$1.90/gallon
- In 2010, Oil was at \$2.50/gallon
- In 2011, Oil is at \$3.00/gallon
- Boilers are 40+years old
- Other systems need to be upgraded
- And finally, No Funds for upgrades

Project Costs

 Total Turnkey Project Costs included engineering, construction administration, and construction costs for the boiler, building and interconnection to existing system

- Project Cost \$1,519,586
- Energy Savings \$76,141
- Simple Payback 20 years
 - Incetnives \$448,000
 - Net Cost \$1,071,586
 - Net Simple Payback 14 years

Financing the Project

- Qualified Zone Academy Bond Low Interest Loan program for School Districts
- Using available incentives to reduce the costs like the Business Energy Tax Credit
- Other loan programs available
- Guaranteed Energy Savings (90% of Savings):
- Estimated to be \$76,141 annually at \$1.90/gallon
- Payback is reduced every time oil rises over \$1.90/gallon

ΙΤΟΤΟΤΟΤΟΤΟΤΟΤΟΤΟΤΟΤΟΤΟΤΟΤ

TOTOTOTOTOTOTOTOTOTOTOTOT

Enterprise School District Pictures

Building in construction and finished

Boiler being installed

Fuel Handling Bin and Material Handling System

Metering bin and transition conveyor

The Boiler Installed

Multi-Cyclone and Air Dryer

Ribbon Cutting Ceremony September 2008

Small Modifications after the installation